Answer :
(A) [tex]7.28\cdot 10^{-10} m[/tex]
The De Broglie wavelength of an electron is given by
[tex]\lambda=\frac{h}{p}[/tex] (1)
where
h is the Planck constant
p is the momentum of the electron
The electron in this problem has a speed of
[tex]v=1.00\cdot 10^6 m/s[/tex]
and its mass is
[tex]m=9.11\cdot 10^{-31} kg[/tex]
So, its momentum is
[tex]p=mv=(9.11\cdot 10^{-31} kg)(1.00\cdot 10^6 m/s)=9.11\cdot 10^{-25}kg m/s[/tex]
And substituting into (1), we find its De Broglie wavelength
[tex]\lambda=\frac{6.63\cdot 10^{-34}Js}{9.11\cdot 10^{-25} kg m/s}=7.28\cdot 10^{-10} m[/tex]
(B) [tex]1.16\cdot 10^{-34}m[/tex]
In this case we have:
m = 0.143 kg is the mass of the ball
v = 40.0 m/s is the speed of the ball
So, the momentum of the ball is
[tex]p=mv=(0.143 kg)(40.0 m/s)=5.72 kg m/s[/tex]
And so, the De Broglie wavelength of the ball is given by
[tex]\lambda=\frac{h}{p}=\frac{6.63\cdot 10^{-34} Js}{5.72 kg m/s}=1.16\cdot 10^{-34}m[/tex]
(C) [tex]9.02\cdot 10^{-9}m[/tex]
The location of the first intensity minima is given by
[tex]y=\frac{L\lambda}{a}[/tex]
where in this case we have
[tex]y=0.492 cm = 4.92\cdot 10^{-3} m[/tex]
L = 1.091 is the distance between the detector and the slit
[tex]a=2.00\mu m=2.00\cdot 10^{-6}m[/tex] is the width of the slit
Solving the formula for [tex]\lambda[/tex], we find the wavelength of the electrons in the beam:
[tex]\lambda=\frac{ya}{L}=\frac{(4.92\cdot 10^{-3}m)(2.00\cdot 10^{-6} m)}{1.091 m}=9.02\cdot 10^{-9}m[/tex]
(D) [tex]7.35\cdot 10^{-26}kg m/s[/tex]
The momentum of one of these electrons can be found by re-arranging the formula of the De Broglie wavelength:
[tex]p=\frac{h}{\lambda}[/tex]
where here we have
[tex]\lambda=9.02\cdot 10^{-9}m[/tex] is the wavelength
Substituting into the formula, we find
[tex]p=\frac{6.63\cdot 10^{-34}Js}{9.02\cdot 10^{-9}m}=7.35\cdot 10^{-26}kg m/s[/tex]