Answer :
Answer:
a.
- After it has traveled through 1 cm : [tex]I(1 \ cm) = 0.5488 I_0 [/tex]
- After it has traveled through 2 cm : [tex]I(2 \ cm) = 0.3012 I_0 [/tex]
b.
- After it has traveled through 1 cm : [tex]od( 1\ cm) = 0.2606[/tex]
- After it has traveled through 2 cm : [tex]od( 2\ cm) = 0.5211[/tex]
Explanation:
a.
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient [tex]\mu[/tex] the formula is:
[tex]I(x) = I_0 e^{-\mu x}[/tex]
where I is the intensity of the beam, [tex]I_0[/tex] is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:
[tex]I(1 \ cm) = I_0 e^{- 0.6 \frac{1}{cm} \ 1 cm}[/tex]
[tex]I(1 \ cm) = I_0 e^{- 0.6}[/tex]
[tex]I(1 \ cm) = I_0 e^{- 0.6}[/tex]
[tex]I(1 \ cm) = 0.5488 \ I_0 [/tex]
After travelling 2 cm:
[tex]I(2 \ cm) = I_0 e^{- 0.6 \frac{1}{cm} \ 2 cm}[/tex]
[tex]I(2 \ cm) = I_0 e^{- 1.2}[/tex]
[tex]I(2 \ cm) = I_0 e^{- 1.2}[/tex]
[tex]I(2 \ cm) = 0.3012 \ I_0 [/tex]
b
The optical density od is given by:
[tex]od(x) = - log_{10} ( \frac{I(x)}{I_0} )[/tex].
So, after travelling 1 cm:
[tex]od( 1\ cm) = - log_{10} ( \frac{0.5488 \ I_0}{I_0} )[/tex]
[tex]od( 1\ cm) = - log_{10} ( 0.5488 )[/tex]
[tex]od( 1\ cm) = - ( - 0.2606)[/tex]
[tex]od( 1\ cm) = 0.2606[/tex]
After travelling 2 cm:
[tex]od( 2\ cm) = - log_{10} ( \frac{0.3012 \ I_0}{I_0} )[/tex]
[tex]od( 2\ cm) = - log_{10} ( 0.3012 )[/tex]
[tex]od( 2\ cm) = - ( - 0.5211)[/tex]
[tex]od( 2\ cm) = 0.5211[/tex]