Answer :
a.
[tex]P({A_1}^c)=1-P(A_1)=\boxed{0.86}[/tex]
b.
[tex]P(A_1\cap A_2)=P(A_1)+P(A_2)-P(A_1\cup A_2)=\boxed{0.07}[/tex]
c. By the law of total probability,
[tex]P({A_3}^c)=P((A_1\cap A_2)\cap{A_3}^c)+P((A_1\cap A_2)^c\cap{A_3}^c)[/tex]
According to the inclusion/exclusion principle,
[tex]P((A_1\cap A_2)^c\cap{A_3}^c)=P((A_1\cap A_2)^c)+P({A_3}^c)-P((A_1\cap A_2)^c\cup{A_3}^c)[/tex]
but by DeMorgan's law,
[tex](A_1\cap A_2)^c\cup{A_3}^c={A_1}^c\cup{A_2}^c\cup{A_3}^c=(A_1\cap A_2\cap A_3)^c[/tex]
So
[tex]P((A_1\cap A_2)^c\cap{A_3}^c)=(1-P(A_1\cap A_2))+(1-P(A_3))-(1-P(A_1\cap A_2\cap A_3))[/tex]
and from there we find
[tex]P(A_1\cap A_2\cap{A_3}^c)=P((A_1\cap A_2\cap A_3)^c)-P((A_1\cap A_2)^c)=\boxed{0.05}[/tex]
d. The event of having at most two of these defects is complementary to the event that all three defects occur simultaneously:
[tex]P((A_1\cap A_2\cap A_3)^c)=1-P(A_1\cap A_2\cap A_3)=\boxed{0.98}[/tex]