Answer :
Answer : The value of [tex]K_c[/tex] for the reaction is, [tex]5.4\times 10^{-3}[/tex]
Solution : Given,
Moles of [tex]N_2[/tex] = 2.0 mol
Moles of [tex]H_2[/tex] = 4.0 mol
Volume of solution = 1.0 L
Concentration of [tex]NH_3[/tex] at equilibrium = 0.55 mol/L = 0.55 M
First we have to calculate the concentration of [tex]N_2\text{ and }H_2[/tex].
[tex]\text{Concentration of }N_2=\frac{Moles}{Volume}=\frac{2.0mol}{1.0L}=2.0M[/tex]
[tex]\text{Concentration of }H_2=\frac{Moles}{Volume}=\frac{4.0mol}{1.0L}=4.0M[/tex]
Now we have to calculate the value of equilibrium constant.
The given equilibrium reaction is,
[tex]N_2(g)+3H_2(g)\rightleftharpoons 2NH_3(g)[/tex]
Initially conc. 2.0 4.0 0
At eqm. (2.0-x) (4.0-3x) 2x
The expression of [tex]K_c[/tex] will be,
[tex]K_c=\frac{[NH_3]^2}{[N_2][H_2]^3}[/tex]
[tex]K_c=\frac{(2x)^2}{(2.0-x)\times (4.0-3x)^3}[/tex] .......(1)
The concentration of [tex]NH_3[/tex] at equilibrium = 0.55 M = 2x
So,
2x = 0.55
x = 0.27 M
Now put the value of 'x' in the above equation 1, we get:
[tex]K_c=\frac{(2\times 0.27)^2}{(2.0-0.27)\times (4.0-3\times 0.27)^3}[/tex]
[tex]K_c=5.4\times 10^{-3}[/tex]
Therefore, the value of [tex]K_c[/tex] for the reaction is, [tex]5.4\times 10^{-3}[/tex]