Answer :
Answer:
[tex]F_f=7.0035\times 10^{-7}\ N[/tex]
[tex]F_j=8.45\times 10^{-6}\ N[/tex]
Explanation:
(a)
- mass of baby, [tex]m_b=4.2\ kg[/tex]
- mass of father, [tex]m_f=100\ kg[/tex]
- distance between father and baby, [tex]d=0.2\ m[/tex]
Now, the gravitational force on baby due to father:
[tex]F_f=G \frac{m_b.m_f}{d^2}[/tex]
[tex]F_f=6.67\times 10^{-11}\times \frac{4.2\times 100}{0.2^2}[/tex]
[tex]F_f=7.0035\times 10^{-7}\ N[/tex]
(b)
- distance between baby and Jupiter, [tex]r=6.29\times 10^{11}\ m[/tex]
- We have mass of Jupiter, [tex]m_j=1.898\times 10^{27}\ kg[/tex]
Now, the gravitational force on baby due to planet Jupiter:
[tex]F_j=G \frac{m_b.m_j}{r^2}[/tex]
[tex]F_j=6.67\times 10^{-11}\times \frac{4.2\times 1.898\times 10^{27}}{(6.29\times 10^{11})^2}[/tex]
[tex]F_j=8.45\times 10^{-6}\ N[/tex]
We find that the gravitational force due to Jupiter is considerably greater than the force due to mass of father.