Answer :
Answer:
[tex]h'(x)=\frac{3r^{2}}{2\sqrt{r^3+5}}[/tex]
Step-by-step explanation:
1) The Fundamental Theorem of Calculus in its first part, shows us a reciprocal relationship between Derivatives and Integration
[tex]g(x)=\int_{a}^{x}f(t)dt \:\:a\leqslant x\leqslant b[/tex]
2) In this case, we'll need to find the derivative applying the chain rule. As it follows:
[tex]h(x)=\int_{a}^{x^{2}}\sqrt{5+r^{3}}\therefore h'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left (\int_{a}^{x^{2}}\sqrt{5+r^{3}}\right )\\h'(x)=\sqrt{5+r^{3}}\\Chain\:Rule:\\F'(x)=f'(g(x))*g'(x)\\h'=\sqrt{5+r^{3}}\Rightarrow h'(x)=\frac{1}{2}*(r^{3}+5)^{-\frac{1}{2}}*(3r^{2}+0)\Rightarrow h'(x)=\frac{3r^{2}}{2\sqrt{r^3+5}}[/tex]
3) To test it, just integrate:
[tex]\int \frac{3r^{2}}{2\sqrt{r^3+5}}dr=\sqrt{r^{3}+5}+C[/tex]