Answer :
Answer:
[tex]0.00027646\ T[/tex]
[tex]2.33\times 10^{-5}\ H[/tex]
-0.04194 V
Explanation:
[tex]N_2[/tex] = Number of turns in outer solenoid = 330
[tex]N_1[/tex] = Number of turns in inner solenoid = 22
[tex]I_1[/tex] = Current in inner solenoid = 0.14 A
[tex]\dfrac{dI_2}{dt}[/tex] = Rate of change of current = 1800 A/s
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]
r = Radius = 0.0115 m
Magnetic field is given by
[tex]B=\mu_0\dfrac{N_2}{l}I\\\Rightarrow B=4\pi \times 10^{-7}\times \dfrac{330}{0.21}\times 0.14\\\Rightarrow B=0.00027646\ T[/tex]
The average magnetic flux through each turn of the inner solenoid is [tex]0.00027646\ T[/tex]
Magnetic flux is given by
[tex]\phi=BA\\\Rightarrow \phi=0.00027646\times \pi 0.0115^2\\\Rightarrow \phi=1.14862\times 10^{-7}\ wb[/tex]
Mutual inductance is given by
[tex]M=\dfrac{N_1\phi}{I}\\\Rightarrow M=\dfrac{22\times 1.14862\times 10^{-7}}{0.14}\\\Rightarrow M=2.33\times 10^{-5}\ H[/tex]
The mutual inductance of the two solenoids is [tex]2.33\times 10^{-5}\ H[/tex]
Induced emf is given by
[tex]\epsilon=-M\dfrac{dI_2}{dt}\\\Rightarrow \epsilon=-2.33\times 10^{-5}\times 1800\\\Rightarrow \epsilon=-0.04194\ V[/tex]
The emf induced in the outer solenoid by the changing current inthe inner solenoid is -0.04194 V