The pressure rise p associated with wind hitting a window of a building can be
estimated using the formula p = rho(V2
/2), where rho is density of air and V is the speed of the
wind. Apply the grid method to calculate pressure rise for rho = 1.2 kg/m3
and V = 100 km/h.
(20%)
a. Express your answer in pascals.
b. Express your answer in meters of water column (m-H2O).

Answer :

Answer:

a)P=462.70 Pa

b)h = 0.047 m of water

Explanation:

Given that

Pressure ,[tex]P=\dfrac{1}{2}\rho V^2[/tex]

[tex]\rho = 1.2\ kg/m^3[/tex]

V= 100 km/h

[tex]V=100\times \dfrac{1000}{3600}\ m/s[/tex]

V=27.77 m/s

The pressure P

[tex]P=\dfrac{1}{2}\rho V^2[/tex]

[tex]P=\dfrac{1}{2}\times 1.2\times 27.77^2\ Pa[/tex]

P=462.70 Pa

We know that density of the water [tex]\rho=1000\ kg/m^3[/tex]

Lets height of the water column = h m

We know that

[tex]_P=\rho _w g h[/tex]

462.70 = 1000 x 9.81 h

[tex]h=\dfrac{462.7}{1000\times 9.81}\ m[/tex]

h = 0.047 m of water

a)P=462.70 Pa

b)h = 0.047 m of water

a)The presuure rise will be P=462.70 Pa

b) The height of the water column h = 0.047 m of water

What will be the pressure rise and the height of the water column of the fluid?

It is given that

Pressure,

[tex]p= \dfrac{1}{2} \rho v^2[/tex]

Here   [tex]\rho =1.2 \ \dfrac{kg}{m^3}[/tex]

[tex]V=100\ \frac{km}{h} =\dfrac{100\times 1000}{3600} =27.77 \ \dfrac{m}{s}[/tex]

Now to calculate the pressure P

[tex]P=\dfrac{1}{2} \rho v^2[/tex]

[tex]P= \dfrac{1}{2}\times 1.2\times (27.77)^2[/tex]

[tex]P=462.70 \ \frac{N}{m^2}[/tex]

As we know that the density of water

[tex]\rho = 1000\ \frac{kg}{m^3}[/tex]

Lets height of the water column = [tex]h_m[/tex]

As We know that

[tex]P= \rho_w gh[/tex]

[tex]462.70=1000\times 9.81\times h_m[/tex]

[tex]h_m=0.047\ m \ of \ water[/tex]

Thus

a)The presuure rise will be P=462.70 Pa

b) The height of the water column h = 0.047 m of water

To know more about the pressure of fluids follow

https://brainly.com/question/24827501

Other Questions