Answered

Use the Gram-Schmidt process to find an orthonormal basis for the subspace of R4 spanned by the vectors (1, 0, 1, 1), (1, 0, 1, 0), (0, 0, 1, 1).

Answer :

Answer:

[tex]$ e_1 = \begin{pmatrix}\frac{\sqrt{\textbf{3}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\end{pmatrix}[/tex]         [tex]$ e_2 = \begin{pmatrix}\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\frac{\sqrt{\textbf{-6}}}{\textbf{3}}\end{pmatrix}[/tex]        [tex]$ e_3 = \begin{pmatrix}\frac{\sqrt{\textbf{-2}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{2}}}{\textbf{2}}\\\\0\end{pmatrix}[/tex]

Step-by-step explanation:

we have to orthonormalize the vectors:

[tex]v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}[/tex]    [tex]v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}[/tex]      [tex]$ v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}[/tex]

According to Gram - Schmidt process, we have:

[tex]u_k = v_k - \sum_{j = 1} ^ {k - 1} proj_{uj} (v_k)[/tex] where, [tex]$ proj_u (v) = \frac{u . v}{u . u}u[/tex]

The normalized vector is: [tex]$ e_k = \frac{u_k}{\sqrt{u_k.u_k}} $[/tex]

Now, the first step.

[tex]v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}[/tex] = u₁

Therefore, e₁ = [tex]$ \frac{u_1}{\sqrt{u_1.u_1}} $[/tex]

[tex]$ = \begin{pmatrix}\frac{\sqrt{\textbf{3}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\\\\\frac{\sqrt{\textbf{3}}}{\textbf{3}}\end{pmatrix}[/tex]

Now, we find e₂.

[tex]$ u_2 = v_2 - \frac{u_1.v_2}{u_1.u_1}u_1 $[/tex]

[tex]$ = \begin{pmatrix} \frac{1}{3}\\ \\ 0 \\\\ \frac{1}{3}\\\\ \frac{-2}{3} \end{pmatrix}[/tex]

Therefore, [tex]$ e_2 = \frac{u_2}{\sqrt{u_2.u_2}} $[/tex]

[tex]$ e_2 = \begin{pmatrix}\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{6}}}{\textbf{6}}\\\\\frac{\sqrt{\textbf{-6}}}{\textbf{3}}\end{pmatrix}[/tex]

To find e₃:

[tex]$ u_3 = v_3 - \frac{u_1. v_3}{u_1.u_1}u_1 - \frac{u_2. v_3}{u_2.u_2} u_2 $[/tex]

[tex]$ = \begin{pmatrix} \frac{-1}{2} \\\\ 0\\ \\ \frac{1}{2} \\\\ 0 \\\end{pmatrix}[/tex]

[tex]$ e_3 = \frac{u_3}{\sqrt{u_3.u_3}} $[/tex]

[tex]$ e_3 = \begin{pmatrix}\frac{\sqrt{\textbf{-2}}}{\textbf{2}}\\\\\textbf{0} \\\\\frac{\sqrt{\textbf{2}}}{\textbf{2}}\\\\0\end{pmatrix}[/tex]

So, we have the orthonormalized vectors [tex]$ e_1, e_2, e_3 $[/tex].

Hence, the answer.

Other Questions