A random variable X has a mean μ = 10 and a variance σ2 = 4. Using Chebyshev’s theorem, find (a) P(|X −10|≥3); (b) P(|X −10| < 3); (c) P(5

Answer :

c) P(5<X<15); (d) the value of the constant c such that P(|X −10|≥c) ≤ 0.04

Answer:

a) 0.4444

b) 0.5556

c) 0.8400

d) 10

Explanation:

Chebyshev’s theorem states that

P(|X - μ| ≥ kσ) = 1/k²

μ = Mean = 10

σ = standard deviation = √variance = √4 = 2

a) P(|X −10|≥3)

Comparing this with P(|X - μ| ≥ kσ)

It is evident that kσ = 3

2k = 3

k = 3/2

k² = 2.25

1/k² = 0.444

P(|X −10|≥3) = 0.444

b) P(|X −10| < 3) = 1 - P(|X −10|≥3)

And P(|X −10|≥3) was found in (a) to be 0.444

So,

P(|X −10| < 3) = 1 - P(|X −10|≥3) = 1 - 0.4444 = 0.5556

c) P(5<X<15) = P(|X-10|<5) = 1 - P(|X-10|≥5)

P(|X-10|≥5) = 1/k²

Comparing with P(|X - μ| ≥ kσ) = 1/k²

where 2k = 5

k = 5/2

k² = 6.25

1/k² = 0.16

P(|X-10|≥5) = 0.16

P(5<X<15) = P(|X-10|<5) = 1 - P(|X-10|≥5) = 1 - 0.16 = 0.8400

d) P(|X −10|≥c) ≤ 0.04

1/k² = 0.04

k = 5

c = kσ = 5×2 = 10

MrRoyal

The Chebyshev's Theorem also known as Chebyshev's Inequality can be applied to several probability distributions.

The given parameters are:

  • [tex]\mu = 10[/tex] --- the mean
  • [tex]\sigma^2 = 4[/tex] --- the variance

Start by calculating the standard deviation using

[tex]\sigma = \sqrt{\sigma^2}[/tex]

So, we have:

[tex]\sigma = \sqrt{4}[/tex]

[tex]\sigma =2[/tex]

Using Chebyshev’s theorem, we have:

[tex]P(|X - \mu| \ge k\sigma) = \frac{1}{k\²}[/tex]

(a) Calculate P(|X −10|≥3)

We have:

[tex]P(|X - \mu| \ge k\sigma) = \frac{1}{k\²}[/tex]

By comparison P(|X −10|≥3) with [tex]P(|X - \mu| \ge k\sigma) = \frac{1}{k\²}[/tex];

[tex]k\sigma = 3[/tex]

Substitute [tex]\sigma =2[/tex]

[tex]k\times 2= 3[/tex]

Divide both sides by 2

[tex]k= \frac 32[/tex]

[tex]P(|X - \mu| \ge k\sigma) = \frac{1}{k\²}[/tex] becomes

[tex]P(|X - 10| \ge 3) = \frac{1}{(3/2)^2}[/tex]

Evaluate the exponent

[tex]P(|X - 10| \ge 3) = \frac{1}{9/4}[/tex]

Rewrite the above fraction as

[tex]P(|X - 10| \ge 3) = \frac{4}{9}[/tex]

Hence, the value of the required probability is [tex]P(|X - 10| \ge 3) = \frac{4}{9}[/tex]

(b) Calculate P(|X −10|<3)

Using the complement rule of probability, we have:

[tex]P(|X - 10|<3) + P(|X - 10|\ge3) = 1[/tex]

Make P(|X - 10|<3) the subject of formula

[tex]P(|X - 10|<3) = 1 - P(|X - 10|\ge3)[/tex]

In (a), we have: [tex]P(|X - 10| \ge 3) = \frac{4}{9}[/tex]

So, the equation becomes

[tex]P(|X - 10|<3) = 1 - \frac 49[/tex]

Take LCM

[tex]P(|X - 10|<3) = \frac{9 -4}9[/tex]

Simplify the numerator

[tex]P(|X - 10|<3) = \frac{5}9[/tex]

Hence, the value of the required probability is [tex]P(|X - 10|<3) = \frac{5}9[/tex]

Read more about Chebyshev's theorem at:

https://brainly.com/question/5179184

Other Questions