Answer :
The question is incomplete, here is the complete question:
Consider the following reaction in aqueous solution: [tex]5Br^-(aq)+BrO_3^-(aq)+6H^+(aq)\rightarrow 3Br_2(aq)+3H_2O(l)[/tex]
If the rate of disappearance of [tex]Br^-(aq)[/tex] at a particular moment during the reaction is [tex]3.5\times 10^{-4}Ms^{-1}[/tex], what is the rate of appearance of Br₂(aq) at that moment?
Answer: The rate of appearance of [tex]Br_2(aq.)[/tex] for the reaction is [tex]2.1\times 10^{-4}[/tex]
Explanation:
We are given:
Rate of disappearance of [tex]Br^-(aq.)=-\frac{d[Br^-]}{dt}=3.5\times 10^{-4}Ms^{-1}[/tex]
For the given chemical equation:
[tex]5Br^-(aq)+BrO_3^-(aq)+6H^+(aq)\rightarrow 3Br_2(aq)+3H_2O(l)[/tex]
As we know, rate of the reaction remains the same.
So,
[tex]\text{Rate of appearance of }Br_2=+\frac{1}{3}\frac{d[Br_2]}{dt}[/tex]
From the reaction:
[tex]\frac{1}{5}\frac{d[Br^-]}{dt}=\frac{1}{3}\frac{d[Br_2]}{dt}[/tex]
Putting values in above equation, we get:
[tex]\frac{1}{5}\times (3.5\times 10^{-4})=\frac{1}{3}\frac{d[Br_2]}{dt}\\\\\frac{d[Br_2]}{dt}=\frac{3}{5}\times (3.5\times 10^{-4})=2.1\times 10^{-4}[/tex]
Hence, the rate of appearance of [tex]Br_2(aq.)[/tex] for the reaction is [tex]2.1\times 10^{-4}[/tex]