Answer :
Answer:
a. P(x=0)=0.2967
b. P(x=1)=0.4444
c. P(x=2)=0.2219
d. P(x=3)=0.0369
Step-by-step explanation:
The variable X: "number of meals that exceed $50" can be modeled as a binomial random variable, with n=3 (the total number of meals) and p=0.333 (the probability that the chosen restaurant charges mor thena $50).
The probabilty p can be calculated dividing the amount of restaurants that are expected to charge more than $50 (5 restaurants) by the total amount of restaurants from where we can pick (15 restaurants):
[tex]p=\dfrac{5}{15}=0.333[/tex]
Then, we can model the probability that k meals cost more than $50 as:
[tex]P(x=k) = \dbinom{n}{k} p^{k}(1-p)^{n-k}\\\\\\P(x=k) = \dbinom{3}{k} 0.333^{k} 0.667^{3-k}\\\\\\[/tex]
a. We have to calculate P(x=0)
[tex]P(x=0) = \dbinom{3}{0} p^{0}(1-p)^{3}=1*1*0.2967=0.2967\\\\\\[/tex]
b. We have to calculate P(x=1)
[tex]P(x=1) = \dbinom{3}{1} p^{1}(1-p)^{2}=3*0.333*0.4449=0.4444\\\\\\[/tex]
c. We have to calcualte P(x=2)
[tex]P(x=2) = \dbinom{3}{2} p^{2}(1-p)^{1}=3*0.1109*0.667=0.2219\\\\\\[/tex]
d. We have to calculate P(x=3)
[tex]P(x=3) = \dbinom{3}{3} p^{3}(1-p)^{0}=1*0.0369*1=0.0369\\\\\\[/tex]