The electron density in copper is 8.49 × 1028 electrons/m3. When a 1.00 A current is present in a copper wire with a 0.40 cm2 cross-section, the electron drift velocity, in m/s, with direction defined relative to the current density, is

Answer :

isyllus

Answer:

Drift velocity in m/s is [tex]1.84 \times 10^{-8}\ m/s[/tex].

Explanation:

Formula for Drift Velocity is:

[tex]u = \dfrac{I}{nAq}[/tex]

Where I is the current

n is the number of electrons in 1 [tex]m^3[/tex] or the electron density

A is the area of cross section and

q is the charge of one electron.

We are given the following:

n = [tex]8.49 \times 10^{28}\ electrons/m^3[/tex]

I = 1 A

A = 0.40 [tex]cm^2[/tex] = 40 [tex]\times 10^{-4}[/tex] [tex]m^{2}[/tex]

We know that q = [tex]1.6\times10^{-19} C[/tex]

Putting all the values to find drift velocity:

[tex]u = \dfrac{1}{8.49 \times 10 ^{28} \times 40 \times 10^{-4}\times 1.6 \times 10^{-19}}\\u = \dfrac{1}{543.36 \times 10 ^{5} }\\u = 1.84 \times 10^{-8}\ m/s[/tex]

So, drift velocity in m/s is [tex]1.84 \times 10^{-8}\ m/s[/tex].

Other Questions