Gotenks99
Answered


Section 8.1 Introduction to the Laplace Transforms

Problem 6.

Prove that if
[tex]f(t)↔ F(s)[/tex]
then
[tex] {t}^{k} f(t)↔ {( - 1)}^{k} {F}^{k} (s).[/tex]
Hint: Assume that it's permissable to the differentiate the integral
[tex]F(s)={∫}^{ \infty } _{0} {e}^{ - st} f(t)dt[/tex]
with respect to s under the integral sign.

Section 8.1 Introduction to the Laplace Transforms Problem 6.Prove that if [tex]f(t)↔ F(s)[/tex]then [tex] {t}^{k} f(t)↔ {( - 1)}^{k} {F}^{k} (s).[/tex]Hint: As class=

Answer :

LammettHash

Let k = 1, for a start. By definition of the Laplace transform,

[tex]\displaystyle F(s) = \int_0^\infty f(t) e^{-st} \, dt[/tex]

Differentiate both sides with respect to s :

[tex]\displaystyle F'(s) = \frac{d}{ds} \int_0^\infty f(t) e^{-st} \, dt[/tex]

[tex]\displaystyle F'(s) = \int_0^\infty \frac{\partial}{\partial s}  \left[f(t) e^{-st}\right] \, dt[/tex]

[tex]\displaystyle F'(s) = \int_0^\infty -t f(t) e^{-st} \, dt[/tex]

so that [tex]t f(t) \leftrightarrow (-1)^1 F^{(1)}(s) = -F'(s)[/tex] is indeed true.

Suppose the claim is true for arbitrary integer k = n, which is to say that [tex]t^n f(t) \leftrightarrow (-1)^n F^{(n)}(s)[/tex]. Then if k = n + 1, we have

[tex]F^{(n+1)}(s) = \dfrac{d}{ds} F^{(n)}(s)[/tex]

Consider the two cases:

• If k = n + 1 is even, then n is odd, so

[tex](-1)^n F^{(n)}(s) = -F^{(n)}(s) \leftrightarrow t^n f(t)[/tex]

and it follows that

[tex]F^{(n+1)}(s) = \displaystyle \frac{d}{ds} \left[-\int_0^\infty t^n f(t) e^{-st} \, dt \right][/tex]

[tex]F^{(n+1)}(s) = \displaystyle -\int_0^\infty \frac{\partial}{\partial s}\left[ t^n f(t) e^{-st} \right] \, dt[/tex]

[tex]F^{(n+1)}(s) = \displaystyle \frac{d}{ds} \left[-\int_0^\infty t^n f(t) e^{-st} \, dt \right][/tex]

[tex]F^{(n+1)}(s) = \displaystyle \int_0^\infty t^{n+1} f(t) e^{-st} \, dt[/tex]

[tex]\implies F^{(n+1)}(s) = (-1)^{n+1} F^{(n+1)}(s) \leftrightarrow t^{n+1}f(t)[/tex]

• Otherwise, if k = n + 1 is odd, then n is even, so

[tex](-1)^n F^{(n)}(s) = F^{(n)}(s) \leftrightarrow t^n f(t)[/tex]

The rest of the proof is the same as the previous case.

So we've proved the claim by induction:

• [tex]t f(t) \leftrightarrow -F(s)[/tex], and

• [tex]\bigg(t^n f(t) \leftrightarrow (-1)^n F^{(n)}(s)\bigg) \implies \bigg(t^{n+1} f(t) \leftrightarrow (-1)^{n+1} F^{(n+1)}(s)\bigg)[/tex]

Other Questions