Answer :
Answer:
v = 98.4 m/s
Explanation:
As we know that the total angular momentum of the system is conserved
so here we will have
[tex]L_{bullet} + L_{disk} = constant[/tex]
[tex]MvR = (\frac{1}{2}mR^2 + MR^2)\omega[/tex]
now plug in all data
[tex]0.02 v(0.600) = (\frac{1}{2}(1.60)(0.600)^2 + 0.02(0.600)^2)4[/tex]
[tex]0.012 v = 1.18[/tex]
[tex]v = \frac{1.18}{0.012}[/tex]
[tex]v = 98.4 m/s[/tex]
The horizontal velocity of the bullet just before it strikes the disk is 648 m/s.
Given data:
The radius of disk is, [tex]r = 0.600 \;\rm m[/tex].
The mass of disk is, m = 1.60 kg.
The mass of bullet is, m' = 0.0200 kg.
The distance from the axle is, L = 0.600 m.
The angular speed of disk is, [tex]\omega = 4.00 \;\rm rad/s[/tex].
Applying conservation of angular momentum as,
Angular momentum of bullet = Angular momentum of disk
[tex]L = L'\\m'vL = \dfrac{1}{2}(m+m')r \omega^2[/tex]
Here, v is horizontal velocity of the bullet just before it strikes the disk.
Solving as,
[tex]0.0200 \times v \times 0.600 = \dfrac{1}{2}(1.60+0.0200) \times 0.600 \times 4.00^2\\v = 648 \;\rm m/s[/tex]
Thus, the horizontal velocity of the bullet just before it strikes the disk is 648 m/s.
Learn more about angular momentum here:
https://brainly.com/question/15104254?referrer=searchResults